Vivekananda College of Engineering & Technology, Puttur [A Unit of Vivekananda Vidyavardhaka Sangha Puttur ®]

Affiliated to VTU, Belagavi & Approved by AICTE New Delhi

CRM08

Rev 1.10

EC

13/01/21

CONTINUOUS INTERNAL EVALUATION- 3

Dept:EC

Sem / Div:V

Sub:Electromagnetic Waves S Code:18EC55

Date:15/01/2021

Time:

Max Marks: 50

Elective:N

9:30-11:00 am

Note: Answer any 2 full questions, choosing one full question from each part.

Q N	Questions	Marks	RBT	COs
	PART A			
	List Maxwell's equations for time varying field in integral and point form.	8	L2	CO4
	Given E= EmSin(ωt - βz) a_y in free space, find D,B and H. Sketch E and H at t =0.	8	L3	CO4
	What is Uniform plane Wave? Derive the expression of uniform plane wave traveling in free space.	9	L3	CO4
	OR			
	For the given medium ε =4x 10 ⁻⁹ F/m and σ =0 . Find 'K' so that following pair of fields satisfy Maxwell's equation. E=(20y-kt) a_x v/m and H=(y+2x10 ⁶ t) a_z A/m	8	L3	CO4
b	State and explain Faraday's law in point and integral form.	8	L2	CO4
С	Show that in a capacitor the conduction current density equal to displacement current density for applied voltage V(t)=V _o Cos wt PART B	9	L2	CO4
3 a	Derive general wave equation in Electric and Magnetic fields.	10	L3	CO4
b	Find the amplitude of displacement current density in the free space within large power distribution transformer where	8	L3	CO4
	$\vec{H} = \cos(377t + 1.2566 \times 10^{-6}z) \hat{a}_{Y} \text{ A/m}.$			
c	Briefly explain Skin depth and Skin effect.	7	L2	CO4
	OR			
4 a	State and explain Poynting theorem.	10	L2	CO4
Ь	A plane wave in non magnetic medium (loss less) has E=50sin(10 ⁸ t+2z) a _y V/m find,	8	L3	CO4
	 The direction of wave propagation ii) λ , f and ε iii) H 			
С	Derive Maxwell's equation to correct Ampere's Circuital law.	7	L3	CO4

Prepared by: Vinay P